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Abstract

In populations occupying discrete habitat patches, gene flow between habitat patches

may form an intricate population structure. In such structures, the evolutionary dynam-

ics resulting from interaction of gene-flow patterns with other evolutionary forces may

be exceedingly complex. Several models describing gene flow between discrete habitat

patches have been presented in the population-genetics literature; however, these mod-

els have usually addressed relatively simple settings of habitable patches and have

stopped short of providing general methodologies for addressing nontrivial gene-flow
patterns. In the last decades, network theory – a branch of discrete mathematics con-

cerned with complex interactions between discrete elements – has been applied to

address several problems in population genetics by modelling gene flow between

habitat patches using networks. Here, we present the idea and concepts of modelling

complex gene flows in discrete habitats using networks. Our goal is to raise awareness

to existing network theory applications in molecular ecology studies, as well as to out-

line the current and potential contribution of network methods to the understanding

of evolutionary dynamics in discrete habitats. We review the main branches of net-

work theory that have been, or that we believe potentially could be, applied to popula-

tion genetics and molecular ecology research. We address applications to theoretical

modelling and to empirical population-genetic studies, and we highlight future direc-

tions for extending the integration of network science with molecular ecology.
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Introduction

Many organisms in nature inhabit only discrete habit-

able patches within a continuous spatial matrix. This is

mostly a result of physiological, behavioural and eco-

logical constraints of the organism in question, and

often also due to human-induced fragmentation pro-

cesses. In such population structures, gene flow, selec-

tion and genetic drift interact to affect important

evolutionary processes such as local and global adapta-

tion (Kawecki & Ebert 2004), migration load (Garc�ıa-

Ramos & Kirkpatrick 1997; Bolnick & Nosil 2007), gene

swamping (Lenormand 2002) and genetic diversity loss

(Templeton 2006; Allendorf et al. 2012). The evolutionary

consequences of such dynamics in discrete population

structures have been of great interest in the population-

genetic literature, and understanding the effect of gene

flow between habitable patches has been the focus of

many modelling efforts.

The classic continent–island model (Haldane 1930;

Wright 1931) describes simple source-sink dynamics,

while the full-island model (Wright 1931; Levene 1953)

assumes discrete habitat patches where gene flow

occurs simultaneously and equally between all patches

(Fig. 1A). A more explicit spatial element was intro-

duced by Kimura and Weiss (Kimura & Weiss 1964)

with the stepping-stone models, where patches are

ordered on a one-dimensional chain (Fig. 1B) or a two-

dimensional lattice (Fig. 1C), gene flow occurring
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between adjacent patches. The stepping-stone models

can also include a long-distance migration component

(Kimura & Weiss 1964) with a designated migration

parameter, usually much smaller than the migration rate

between adjacent patches, describing migration between

patches regardless of their spatial position, equally for

all patches (Fig. 1B and C). The metapopulation dynam-

ics framework has also been applied to study evolution-

ary dynamics in discrete habitats in a spatially explicit

context, but relaxing the equidistance assumption of the

stepping-stone model (Heino & Hanski 2001; Hanski &

Heino 2003; Hanski et al. 2011). These spatially realistic

metapopulation models (SRMM) allow for arbitrary

positioning of patches in space, with gene flow occur-

ring at decreasing-with-distance rates (Fig. 1D).

Although simple in the characterizations of spatial rela-

tions between patches, the study of these and similar

models has proven extremely useful for evolutionary

theory.

However, interactions between patches in real pop-

ulations are often nontrivial and cannot be simplified

to such an extent, as in discrete habitats and frag-

mented landscapes migration often forms a complex

gene-flow pattern which could be uncorrelated, to

some extent, with geographic distance. Can such com-

plexities be incorporated in our models to better

explain and predict evolutionary processes? Can we

develop new methodologies for studying populations

with complex gene-flow patterns? Are there

evolutionary phenomena that we are failing to explain

by relying on simplistic models? While these ques-

tions pose difficult challenges, the extensive mathe-

matical discipline of network theory may provide an

appropriate framework for addressing some of these

issues.

Network theory is a relatively new discipline which

has seen application in diverse fields, such as sociology

(Easley & Kleinberg 2010), ecology (Proulx et al. 2005;

Bascompte 2007; Greenbaum et al. 2015), real estate

markets (Seiler et al. 2014), epidemiology (Keeling &

Eames 2005; Fefferman & Ng 2007), criminology (Calvo-

Armengol & Zenou 2004), animal behaviour (Croft et al.

2008; Hock & Fefferman 2011), evolutionary biology

(Pickrell & Pritchard 2012; Greening & Fefferman 2014)

and many others. This discipline, a branch of discrete

mathematics, studies properties of mathematical con-

structs composed of discrete elements and connections

of various types between them. The network framework

allows exploration of complex topologies of interactions

between discrete elements; methods and concepts for

studying such topologies are continuously being devel-

oped (Wasserman & Faust 1994; Matousek & Nesetril

1998; Barab�asi & Albert 1999; Carringon et al. 2005;

Hanneman & Riddle 2005; Bornholdt & Heinz 2006;

Newman 2010; Sterbenz et al. 2011; Boccaletti et al. 2014;

Lordan et al. 2014).

General migration-matrix models have been sug-

gested in the population-genetics literature (Bodmer &

Fig. 1 Schematic depiction of discrete-habitat gene-flow models. Blue nodes represent habitat patches; black lines represent migration

corridors, and line thickness represents gene-flow rate. In B and C, the red nodes represent the point at infinity, through which long-

distance migration travels, and the grey lines represent the long-distance migration rates. In A, gene-flow rates are identical between

all patches; in B and C, gene-flow occurs between adjacent patches and long-distance gene-flow occurs through the point at infinity;

in D, patches may be positioned arbitrarily in two-dimensional space but gene-flow is constrained to follow distance-decreasing func-

tions; in E, topology is unconstrained. Models A, B, C and D are special cases of the general network model, E.
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Cavalli-Sforza 1968), and recently population geneticists

and ecologists have started to realize that networks,

where nodes represent discrete habitable patches and

edges represent gene flows, may be used to account for

contextually responsive gene-flow patterns between

patches (Smouse 2000; Dyer & Nason 2004; Rozenfeld

et al. 2008; Wagner & Fortin 2012; Dyer 2015). The pre-

viously described discrete models – such as the island

model, stepping-stone models and SRMM – are particu-

lar cases of networks, but their interpretation may be

constrained by the specific topology they consider. It is

when gene-flow patterns cannot be assumed to be sim-

ple or ‘spatially realistic’ enough to be embedded into

low-dimensional spaces (see Theoretical considerations

in network modelling of discrete habitats section below)

that network modelling is expected to be particularly

important and provide novel insights. Network mod-

elling can, in some sense, release population genetics

from the necessity to devise specific models for specific

topologies and allow us to move towards a more gen-

eral framework.

In this paper, we will review the main branches of

network theory that have been applied, or that we

believe could potentially be applied, to population

genetics and molecular ecology. The goal is to provide

an overview of the implementation of these methodolo-

gies to population genetics in discrete habitats and to

highlight the directions where network theory can fur-

ther contribute to this research. We focus both on theo-

retical modelling and applied tools for empirical

system-specific analyses.

Discrete habitats as networks

Network science is concerned with the study of mathe-

matical constructs called networks or graphs. Networks

are composed of discrete elements, called nodes, and

interactions or connections between these elements,

called edges. It is often convenient to describe this con-

struct using an adjacency matrix, where each matrix ele-

ment describes the interaction between two nodes.

Gene-flow patterns in discrete patchy habitats can

therefore be naturally described by a network with

habitat patches as nodes and migration corridors or

gene-flow rates between the patches as edges (Fig. 2).

Theoretical considerations in network modelling of
discrete habitats

Classic discrete models, such as the island and step-

ping-stone models, have looked into simple interaction-
patterns between discrete habitat patches, and SRMM

have looked into distance-dependent interactions.

Although these models address habitats as discrete ele-

ments, they are mostly studied using continuous mathe-

matical methods (e.g. Kimura & Weiss 1964; Hanski

et al. 2011). The use of continuous methods to analyse

discrete models can be justified when the underlying

structure of the models can be topologically embedded

into simple, continuous spaces (Note: an embedding of

a space into another space is akin to positioning one

space into another while preserving the relations

between the different points in the original space). For

example, the 1D stepping-stone model without long-dis-

tance migration, while being a discrete model, can be

embedded into the continuous real line by identifying

each patch (and therefore its location) with an integer,

while preserving the order of the patches; this is an

embedding of a discrete space into a continuous space.

A similar embedding can be done with the 2D step-

ping-stone model without long-distance migration into

the Euclidian plane. However, the 1D stepping-stone

model with long-distance migration cannot be embed-

ded into the real line as this model contains a node

(A) (B)

Fig. 2 Network description of a discrete habitat. (A) Discrete-habitat patches (green) in an inhabitable but traversable matrix (yellow).

Both the habitats and matrix are heterogeneous, shown by different colour shades. (B) Network representation of the population,

with nodes as habitat patches and edges as migration rates/corridors. Selection pressures in the different patches are shown as col-

our shades, and gene-flow rates are shown as edge thickness.
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which is equally distant to every other node (the red

node in Fig. 1B), while no point in the continuous real

line shares this property. This discrete topology can still

be embedded into a different simple continuous space,

namely the real line with a point at infinity added to it

(in mathematical topology, this is the ‘one-point com-

pactification’ of the real line; Alexandroff 1924). In a

similar manner, the 2D stepping-stone model with

migration cannot be embedded into the Euclidian plane,

but can be embedded into the Euclidian plane with a

point at infinity. While the SRMM offer much more

flexibility in the relative positioning of patches, the

assumption that interpatch gene flows follow a dis-

tance-decreasing function precisely means that these

models can be embedded into a two-dimensional Eucli-

dean space; this is the ‘spatially realistic’ element of

these models.

However, for many natural populations occupying

discrete habitats, geographic distance is only one of sev-

eral, often more significant, factors that shape gene-flow
patterns; therefore, complex gene flow should be

expected to be relatively common in nature. The topolo-

gies of the stepping-stone models and the SRMM can be

described by networks (Fig. 1B–D) but, in general, net-

works (such as in Fig. 1E) cannot be embedded into sim-

ple continuous spaces. When such embeddings are not

possible, it is crucial to account explicitly for spatial dis-

creteness, as relying on continuous methods to describe

spatial interactions may result in erroneous conclusions

(Durrett & Levin 1994; Bascompte & Sole 1995; Shnerb

et al. 2000). Therefore, it is becoming increasingly clear

that we need to model discrete habitats with discrete

methods (Urban et al. 2001, 2009; Butts 2009; Pocock et al.

2012; Cavanaugh et al. 2014). By framing evolutionary

dynamics of discrete habitats in network theory termi-

nology, both theoretical questions and empirical studies

may benefit from new perspectives and existing tools.

Constructing habitat patch networks from empirical
data

In network science, practical tools, concepts and meth-

ods have been developed to analyse complex empirical

networks, for example linking patterns of neural pro-

cessing across systems in the brain (Kinnison et al.

2012), or finding vulnerabilities that can lead to black-

outs from failures in the power grid (Albert et al. 2004).

The application of network theory to molecular ecology

has, thus far, been predominantly to analyse empirical

data, particularly in the context of landscape genetics

(Dyer 2015; see also Table S1, Supporting information).

For such analyses, the first step is always to define

the nodes and edges. Delineating nodes is often

straightforward, as it should be congruent to the

ecological definition of the habitat patches. Edges repre-

sent gene-flow rates, and are more difficult to derive

from empirical data. While edges could be approxi-

mated from nongenetic data, for example by combining

mark–recapture methods, movement data, behavioural

observations, life histories and landscape analyses to

deduce migration and reproduction rates, gene-flow
rates are most often inferred from interpopulation

genetic-distance measures. Several measures have

already been employed to construct networks, depend-

ing on the type of genetic data available (see Table S1,

Supporting information): FST (Weir & Cockerham 1984),

nucleotide distance (Tajima 1983), Goldstein distance

(Goldstein et al. 1995), Jensen-Shannon divergence

(Masucc et al. 2012) and the squared Euclidian distance

between centroids as used in AMOVA (Dyer & Nason

2004). There has also been utilization of outputs of anal-

yses such as principle component analysis (PCA) or

ADMIXTURE (Alexander et al. 2009) to construct habi-

tat patch networks (Paschou et al. 2014).

These procedures usually result in very dense pair-

wise matrices; that is, almost every pairwise relation

between habitat patches is characterized by a nonzero

value. To derive sparser networks, which are more

workable, edge-inclusion criteria (or ‘edge pruning’) are

typically used, targeting only the stronger or more

informative relations. While the problem of determining

how to formulate such criteria is currently being stud-

ied in general network science (Serrano et al. 2009;

Radicchi et al. 2011; Dianati 2016), several criteria have

been suggested and applied in the population-genetic

literature: conditional independence (where we remove

edges representing partial correlation coefficients that

are small enough to imply that other edges in the net-

work are sufficient to explain the total genetic covari-

ance. Implemented in the software package Popgraph;

Dyer & Nason 2004); the threshold below which the

network becomes disconnected known as the percola-

tion threshold (Rozenfeld et al. 2008); and the threshold

resulting in the network with highest modularity (see

communities in networks section below) value (Kinin-

month et al. 2010). Of these, arguably, conditional inde-

pendence is more appropriate for most applications, as

the modularity criterion is suitable only for questions

regarding the modular structure of the network, and

the interpretation of the percolation threshold in these

networks is relevant only if the question relates to the

potential of an allele present in one network component

to reach another component (see percolation and diffu-

sion section below). However, as edge-inclusion may

affect inferences made from network analyses, particu-

larly the scale for which structure is maintained in the

network after edges are removed (Serrano et al. 2009),

perhaps a more conservative approach would be to test

© 2017 John Wiley & Sons Ltd
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several edge-inclusion thresholds or criteria, and

develop methods to synthesize and interpret the results

of several analyses. This has been implemented in other

network-based population-genetic analyses (Greenbaum

et al. 2016), and the topological field of persistent

homology (Edelsbrunner & Harer 2008) may provide

the relevant mathematical framework for developing

such an approach.

Addressing evolutionary dynamics in discrete
habitats using networks

Networks may represent a variety of systems, from

genes to populations, from brain neurons to the Inter-

net, and network theory has therefore branched out,

with different branches addressing different issues

related to network topologies and processes. In this sec-

tion, we will review those branches that have been or

may be applied to population-genetic questions in dis-

crete habitats. Table 1 summarizes the main network

terms in this review, along with their population-

genetic equivalents and key literature. The Table S1,

Supporting information lists studies that have devel-

oped or implemented network methodologies to study

population genetics in the context of discrete habitat

patches. Box 1 and Box 2 present a concrete example of

a network formulation of evolutionary dynamics in

habitat patch networks with heterogeneous selection.

Centrality measures

In many network applications, the major interest is in

identifying nodes that are of importance for a particular

function or process. A variety of centrality measures

have been developed to evaluate different aspects of

nodes’ importance: degree centrality for local importance

in the node’s neighbourhood; betweenness, flow between-

ness and random-walk betweenness for centrality in flow

or diffusion processes; closeness and random-walk close-

ness for speed of information transfer; eigenvector central-

ity for the influence of a node on the network (see

Newman 2010 for definitions of these and other mea-

sures, and Landherr et al. 2010 for a critical review).

These measures assign a numeric value to each node,

allowing ranking of nodes according to their centrality,

making identification of the most central nodes, for a

particular process, possible. The different measures not

only address different functions of the network, but

they employ different assumptions on the behaviour of

the studied function.

In molecular ecology, centrality measures can be

used, particularly in empirical population studies, to

investigate the importance of certain habitat patches to

different evolutionary processes. In many ecological

studies, and particularly in conservation, it may be

important to know which habitats and which migration

corridors are essential for maintenance of genetic diver-

sity in the population as a whole, which constitute

major pathways for gene flow, and which affect poten-

tial for local adaptation. Network analysis has been

applied to identify central habitat patches in many

systems and taxa, including mammals (Garroway

et al. 2008, 2011; Ball et al. 2010; Creech et al. 2014;

Fiset et al. 2015), frogs (Munwes et al. 2010; Naujokaitis-

Lewis et al. 2013), invertebrates (Janes et al. 2014; Tripo-

nez et al. 2015), seagrass (Rozenfeld et al. 2008), trees

(Richards et al. 2009; Herrera-Arroyo et al. 2013) and

annual plants (Sexton et al. 2016). In these studies

degree, betweenness, and eigenvector centralities, and

occasionally closeness and flow centralities, have been

used to locate patches central to gene flow in the net-

work, highlighting subpopulations of ecological or con-

servation interest.

Although many centrality measures have been applied

in such studies, not much attention has been given to the

different functions these measures address. The appro-

priate measure to be used in a particular study should

depend mainly on the ecological or evolutionary ques-

tion of interest. Degree centrality (at the level of the node)

can be used as a measure of connectivity of a patch (the

number of patches the patch is connected to), but it only

quantifies centrality at the local scale, and may be mis-

leading for more global questions, such as for conserva-

tion prioritization. A more global centrality measure is

eigenvector centrality, which quantifies the influence of

nodes on the entire network by considering not only the

connection of the nodes but also the centrality of the

nodes to which it is connected (more precisely, it ranks

nodes based on the attraction of random walks at the sta-

tionary state). This centrality measure can perhaps be

useful for questions regarding local adaptation and

migration load, particularly in theoretical and modelling

studies which involve selection.

Most often, when applying centrality measures to

empirical habitat patch networks, interest lies in identi-

fying patches essential for gene flow in the network as

a whole; the class of ‘flow measures’ is more likely to

be correlated with gene flow than other classes. Many

studies have applied betweenness, the most commonly

used flow centrality measure, which counts the number

of shortest paths connecting the rest of the network that

pass through each given node. However, this measure

is designed for studying information that is supervised

and spreads only along shortest paths in the network,

as is most often the case in social or computer networks

where information is consciously directed. As gene flow

in natural populations is not confined to shortest paths,

nor is it consciously supervised, this measure, as well

© 2017 John Wiley & Sons Ltd
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Table 1 Main network terms mentioned in this paper

Network term Network description

Example of ecological/

evolutionary interpretation

Relevant papers, where

appropriate (Network/Biology)

Node (vertex) Discrete entity Habitat patch/deme —

Edge (link) Connections/interactions between

nodes

Migration rate/migration

corridor

—

Network (graph) A set of nodes with connecting edges Patch networks/mosaics Newman 2010; /Pascual-Hortal

& Saura (2006), Rozenfeld et al.

(2008), Urban et al. (2009),

Baranyi et al. (2011)

Weighted

network

A network with numerical weights

assigned to each of the edges

Patch networks with varying

levels of gene flow between

patches

Newman (2010)/this paper

Directed

network

A network where edges have a

direction from one node to the other

Patch networks with asymmetric

gene flow between patches

Newman (2010)/Morrissey & de

Kerckhove (2009)

Adjacency

matrix

A matrix describing a network, in

which unconnected nodes are set to 0

and connected nodes are set to 1 (or

the weight of their connecting edge)

— Newman (2010)/—

Node degree The number of edges (or sum of edges

weights) connected to the node

Connectivity of a patch Newman (2010)/Estrada &

Bodin (2008)

Centrality A class of measures used to assign

values to nodes according to their

position in the network structure.

There are various types of centrality

measures used to capture different

types of values/structures

Patches of particular importance

for particular processes, for

example gene flow, disease

spread, local adaptation

Landherr et al. (2010); Newman

(2010)/Rozenfeld et al. (2008)

Community A group of nodes that are densely

connected within the group and

sparsely connected to nodes outside

the group

Subpopulation/region Girvan & Newman (2002);

Newman & Girvan (2004)/

Fortuna et al. (2009), Fletcher

et al. (2013)

Component

(maximal)

A group of nodes connected between

themselves and not to any other node

in the network

A maximal connected set of

patches

Newman (2010)/Holstein et al.

(2014)

Diffusion process A process that spreads between

adjacent nodes

Spread of alleles or mutations

through a patch network

Newman (2002a)/Thomas et al.

(2012); Neuwald & Templeton

(2013)

Percolation

threshold

A threshold (e.g. for the mean degree)

above which a diffusion process may

cover a significant portion of the

network

A theoretical threshold for patch

connectivity above which

alleles or mutation are expected

to spread to many patches

Broadbent & Hammersley (1957);

Cohen & Havlin (2010)/—

Multilayer A generalization of a network which

consists of several layers, each of

which is itself a network of nodes and

intralayer edges, with an additional

set of interlayer edges connecting

nodes in different layers

Hierarchical population structure Kivel€a et al. (2014)/—

Multiplex A multilayer where all layers contain

the same network

Populations with complex life

histories, epistasis

Kivel€a et al. (2014)/—

Hypergraph A generalization of a network, where

instead of edges connecting pairs of

nodes, there are hyperedges

connecting arbitrary many nodes

Ecological Genomics Berge & Minieka (1973)/Weighill

& Jacobson (2015)
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other ‘supervised’ flow measures, is less than optimal.

Perhaps the most appropriate centrality measure in

respect to gene flow is the random-walk betweenness

(Newman 2005), which quantifies the amount of ran-

dom walks between nodes that pass through each

node. This measure better reflects the unsupervised

and stochastic nature of gene flow between habitat

patches.

Communities in networks

Many networks in nature have a modular structure,

where certain groups of nodes are more connected

among themselves than to other nodes in the network.

Such substructures within a network are known as

modules or communities (the name stems from human

social networks, where such substructures are inter-

preted as social communities). While there is no single

definition for a community, it is roughly thought of as a

dense subnetwork (subgraph) within a network. The

study of communities in networks has gained consider-

able momentum with the development of the modularity

measure (Girvan & Newman 2002; Newman 2004b;

Newman & Girvan 2004) which denotes quality values

to community partitions of the networks. The basic

idea for modularity evaluation is to compare the

intracommunity densities (number and weights of

edges) with what would be expected in a random net-

work with the same node degrees. This allows quantifi-

cation of how more (or less) modular the network is

from a similarly structured random network. The mea-

sure of modularity, as well as other techniques that

have since been developed, allows for computationally

efficient detection of communities even in large and

complex networks (reviewed in Fortunato 2010).

Many discrete habitats in nature are also modular, and

gene-flow patterns in such habitats often have hierarchi-

cal and modular genetic structures (e.g. McCauley &

Eanes 1987; Fletcher et al. 2013; Viricel & Rosel 2014; Pisa

et al. 2015). Such hierarchical structures are often difficult

to observe, especially when the underlying migration

patterns are complex. Traditionally, such structures are

detected using the F-statistics framework (Wright 1950),

but here only a priori, putative, structures can be tested,

and complexity of migration is not accounted for. There-

fore, some studies have adopted a network framework

and utilized community detection procedures to detect

structure at various hierarchical levels, whether by look-

ing at networks of individuals (Cohen et al. 2013; Green-

baum et al. 2016) or networks of habitat patches (Fortuna

et al. 2009; Kininmonth et al. 2010; Munwes et al. 2010;

Albert et al. 2013; Fletcher et al. 2013; Peterman et al.

Box 1. Modelling selection-migration dynamics in networks

Here, we will consider discrete habitats with complex gene-flow patterns and heterogeneous selection pressures in

the different habitat patches (see Fig. 2). The representation of discrete habitats as network adjacency matrices is

convenient for formulizing evolutionary dynamics. We will present a simple model for selection-migration dynam-

ics using a network with self-loops (edges that connect a node to itself).

The model describes n habitats, where in each habitat the population experiences different selection pressures.

Gene flow between patches i and j is given by migration rate mij, representing the proportion of the population at

patch i replaced by migrants arriving from patch j. Self-loops (i.e. the diagonal of the migration matrix) represent

the proportion of the populations that do not migrate, that is mii ¼ 1�P
j

mij. The model assumes a haploid popu-

lation and tracks the frequency of one specific allele, f ti . The effect of selection on a patch with selection coefficient

s and frequency ft is given by a function g describing the change of frequency in one generation, ft+1 = g(s, ft) (e.g.

for soft selection gðs; f tÞ ¼ f tðsþ1Þ
f tsþ1 ; Wallace 1975). Selection is assumed to occur immediately after dispersal. With

these definitions, we can now specify the recursion describing our model:

f tþ1
i ¼

Xn

j¼1

mijgðsj; f tj Þ ðeqn 1Þ

Each term in the summation represents the frequency change attributed to individuals arriving from patch j (or

individuals staying in patch i for the case of j = i), with each migrant group arriving from patch j weighted in pro-

portion to mij. The network mij, along with the selection coefficients si, fully describes the model.

This model can be generalized to address temporal changes in selection and migration by having s and mij contain

functions rather than fixed values. It can also address life-history traits that affect migration and selection by hav-

ing g depend on selection coefficients in both the source and the sink nodes of migration edges, in proportion to

the time spent in each, as well as the cost of migrating between patches. Box 2 shows an elaboration on the for-

mulization of this model.

© 2017 John Wiley & Sons Ltd
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2016). Detected communities are interpreted as clusters

of habitat patches that are more genetically similar

between themselves than to other habitat patches. The

detection of these structures is done without a priori parti-

tioning or knowledge of the number of clusters present

in the population, which is often advantageous in molec-

ular ecology studies, where such information is unavail-

able, or when we do not want to confine the results to

presumed subpopulations.

While the rather limited utilization of community

procedures in molecular ecology has so far been

mostly focused on revealing hierarchical structures in

empirically sampled populations, theoretical studies

aimed at understanding evolutionary dynamics in dis-

crete habitat patches may benefit from adopting a net-

work approach as well. There is currently an effort

among network theorists to provide a more general

framework for studying modular networks (Fortunato

2010), particularly using generalized community mod-

els (Newman & Peixoto 2015; Zhang et al. 2016). Such

models, adapted to the population-genetic context,

may be used in the future to ask questions regarding

the formation of complex modular structures through

evolutionary dynamics, or about processes in modular

habitat patch networks, such as spread of alleles or

local adaptation.

Percolation and diffusion

Percolation theory in networks is concerned with the

ability to find an available path through a network (i.e.

if introduced on one side, what is the probability of

being able to follow a path through the network to

reach the other side successfully; Broadbent &

Box 2. Selection-migration dynamics and walks on networks

The selection-migration model in Box 1 describes the evolutionary dynamics in the patch network, but the recur-

sive formulation does not provide much insight; moreover, it requires calculation of the dynamics in the entire sys-

tem to follow dynamics in a single patch. A more tractable formulation can be achieved using the concept of

random walks on networks. A walk on a graph (network) is a sequence of nodes such that each pair of adjacent

nodes in the sequence is connected with an edge in the network (West 2001), thus capturing the notion of travel-

ling on the network from node to node along the network’s edges. The weight of a walk, in weighted networks, is

defined as the product of the edges included in the walk (Newman 2004a).

One can partition the gene pool in node i at time t to genes arriving from different patches of origin (at time 0)

and through different walks on the networks to node i. Suppose we follow a walk w of length t from node j to

node i, where each edge describes the proportion of the population migrating along that edge or staying in the

same patch in one generation. Each generation we will be following a smaller group of individuals as different

parts of the group follow different edges, but the frequency of the allele in this small group we are following will

be determined solely by the frequency at the patch of origin and by the selection experienced at habitat patches

along the walks. The proportion of the gene pool determined by the genes ‘following’ this walk is the proportion

of the original population that remains at the end of the walk, that is the weight of the walk, �w. The frequency of

this part of the population is determined by the selection coefficients along the walk, s~w ¼ ðst�1; st�2; . . .; s1Þ, which

we will denote as Gðs~w; f0j Þ ¼ gðst�1; gðst�2; gð. . .gðs1; f0j Þ. . .Þ. As each genealogy in each walk is independent, the fre-

quency at node i at time t is the sum over all relevant walks:

f ti ¼
X

w2Wt
i

wGðsw; f0wÞ ðeqn 2Þ

where Wt
i is the set of all walks of length t terminating in node i, and f0w is the frequency at time 0 in the first patch

in walk w.

The main benefit of this reformulation is that it is no longer recursive, making it more explicit. This also allows

teasing apart the contribution of patches, connections of patches or regions of the patch network to the allele fre-

quency in any particular patch in a given time. For example, considering the walks in Wt
i that include a patch j

(and the selection along these walks) allows for the evaluation of the effect patch j has on the allele frequency of

another patch i, and this effect can be assessed for the equilibrium state by taking t to be large. How a particular

edge or group of patches or connections affect the allele frequency can be addressed in a similar manner. This

could be useful for evaluating the influence of specific patches, or groups of patches, on the potential of local adap-

tation and migration load on patches of interest, or to identify patches or migration corridors with high influence

on local adaptation of other patches.
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Hammersley 1957), which relies on understanding the

formation of disconnected components in networks by

different processes. Both the formulation of this ques-

tion and the techniques used to address it have been

approached in many ways.

One formulation of a percolation problem is con-

cerned with the ability of networks to remain connected

when nodes or edges are removed from the network. It

has been observed that in many networks there is a

sharp threshold, termed percolation threshold, above

which the networks remains relatively intact with one

component containing a significant proportion of the

nodes in the network (this component is known as a

giant component), and below which networks breaks

down into many small disconnected components. This

behaviour of a sharp transition between two regimes

means that a system that depends on connectivity

between different parts of the network may collapse

rapidly from a functional state to a dysfunctional state,

once the percolation threshold is breached. Such beha-

viour can be of severe consequence to populations with

complex gene-flow patterns between habitat patches

that depends on adequate gene flow; understanding

where the percolation threshold lies may be crucial for

conservation and management of such populations

(Bascompte & Sole 1995; Cumming et al. 2010). The tai-

loring of this question to the narrower formulation of

‘invasion percolation’, which considers ‘paths of least

resistance in traversing the network’ rather than the

probability of an available path simply existing, may

also be of use (Wilkinson & Willemsen 1983; Furuberg

et al. 1988), as networks that are connected but are char-

acterized by very high resistance between regions may

also be of conservation concern. This has recently been

addressed in landscape genetics (McRae et al. 2008;

Schwartz et al. 2009; Kershenbaum et al. 2014), but

seemingly not in the context of patch networks.

A second formulation of a percolation problem that

may prove useful in the study of evolutionary dynam-

ics is concerned with the extent to which a diffusive

process would spread through a network. This has been

well studied in the context of epidemiology, where the

probability and size of an outbreak is studied using per-

colation theory (Newman 2002a,b). Here, the percola-

tion threshold delineates scenarios where an outbreak,

infecting a large part of the population, may occur, and

the probability and size of such occurrences is

addressed. This epidemiological problem resembles the

problem of spread of alleles, particularly novel muta-

tions, in patch networks. Here, the probability and

extent of reach of new mutations in a patch network

depend on the structure of the network, the levels of

gene flow and the selection pressures at the different

habitat patches. While this problem is yet to be

addressed using network terminology, existing formula-

tions in network epidemiology (a network describing

epidemiologically relevant contacts between individu-

als) may prove extremely useful.

Although percolation addresses the probability of

there being a path through a network and the emer-

gence of a giant component, it does not address more

nuanced questions of network-based flow that can be of

significant interest when trying to anticipate dynamics

in a network over time. Traditionally, continuous diffu-

sion models are used to explore such dynamics (Crank

1975), and similar discrete network diffusion models

have also been developed (e.g. Leskovec et al. 2007;

L�opez-Pintado 2008; Kasprzyk 2012). While our under-

standing of the general behaviour of diffusion processes

in networks is still limited, models for studying these

behaviours might prove useful to answer questions

such as: What is the expected time for a successful,

locally adaptive mutation to reach another environmen-

tally similar habitat? If a mutation is introduced at a

particular patch, after a set duration, what is its likely

distribution throughout the entire network (i.e. how far

will it have permeated)? What are the transient spread

dynamics and the ultimate stationary distributions (if

any) for a mutation spreading to new patches and con-

tinuing to circulate among patches where it is already

present (see, for example, Neuwald & Templeton 2013,

where the temporal diffusion of alleles in a patchy habi-

tat of collared lizards is tracked)? If the new mutation

is beneficial only in certain patches, how will the diffu-

sion dynamics affect the potential for local adaptation

in these patches?

Multilayers, multiplexes and hypergraphs

While the above techniques may already provide a

diversity of relevant tools for purposes of exploring dis-

crete systems, they have all been limited in their repre-

sentations of those systems to traditional networks, that

is a set of nodes and the edges that connect pairs of

them. Many useful generalizations of this concept have

also been developed, most falling under two frame-

works: multilayer networks (Kivel€a et al. 2014) and hyper-

graphs (Berge & Minieka 1973). Multilayer networks

consist of several interconnected layers, each containing

a regular network (nodes within the same layer may be

connected by intralayer edges, while nodes in different

layers may be connected by interlayer edges). A multi-

layer network where the nodes in the different layers

are the same entities is called a multiplex network (Lee

et al. 2012). This generalization allows extending the

applicability of network theory to systems that contain

more than one network, such as in explorations of com-

petition among viral strains transmitted in networks

© 2017 John Wiley & Sons Ltd
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where the nodes are hosts (Darabi Sahneh & Scoglio

2014), or the resilience of passenger rerouting in air tra-

vel with multiple carrier networks and random system

failures (Cardillo et al. 2013).

Multilayer networks can be applied to the study of

evolutionary dynamics in discrete habitats in several

ways. First, multilayer networks can be used to model

hierarchical population structures, where gene-flow pat-

terns at local and regional scales are governed by differ-

ent dynamics. In this formulation, a local network,

labelled as a layer, describes the gene-flow patterns

between patches in one region and consists of patches

and intralayer edges, and inter-regional dynamics are

described by adding interlayer edges describing gene

flow between patches from different regions. Different

dynamics at different spatial scales may lead to differ-

ent patterns in inter- vs. intra-edges, which will result

in different patterns of degree distributions.

Multiplex networks may be used to explicitly model

selection and migration in organisms with different

migration and selection patterns and different life

stages and\or sexes. A multiplex of discrete habitats

would consist of several layers, where in each layer,

each habitat patch is represented by a node. The layers

represent the different types of life stages (and/or dif-

ferent sexes) of the organism, and life stage-specific

migration patterns and selection pressures may result

in different networks at the different layers. The edges

that connect the nodes between layers (only nodes rep-

resenting the same patch may be connected between

layers in a multiplex network) describe the demo-

graphic rates of flow from one life stage to another. The

allele frequencies at each level of the multiplex indicate

the allele frequency of a given stage in a given patch.

Such multiplex networks may be used to address ques-

tions of centrality, percolation, and diffusion while tak-

ing into account all components of the population.

Multiplex networks can also be used to model selec-

tion acting on a suite of interdependent alleles. The gene-
flow dynamics at a given locus can be described by the

dynamics on one layer, while the selection coefficients

for each layer are described by a different vector (for

example as shown in Box 1). Allele frequencies are deter-

mined in each time step by evaluating the interaction of

alleles in all layers (loci), taking into account the allele

frequencies to determine the probability of co-occurrence

of the interacting alleles (selection pressures may differ

given presence of other alleles in the population). If

gene-flow patterns are identical for all alleles, then the

different layers may be identical; however, in the case of

alleles affecting, for example, dispersal, gene-flow pat-

terns may be different (e.g. an allele affecting a long-

range dispersal trait should be formulated as a different

patch network than an allele not affecting dispersal).

While a multiplex network with several layers may

be sufficient to model several interacting alleles, this

interaction can often be very complex and involve

many alleles. Hypergraphs are mathematical constructs

similar to networks; they consist of nodes and hyper-

edges, where hyperedges may connect more than a pair

of nodes (i.e. a hyperedge may connect triplets, quadru-

ples of nodes; Berge & Minieka 1973). Hypergraphs are

often used in the field of genomics to represent interac-

tions among several alleles for particular functions (Sole

& Pastor-Satorras 2006; Tian et al. 2009; Weighill &

Jacobson 2015). Thus, a system comprised of a multi-

plex network, describing gene-flow dynamics in differ-

ent alleles, coupled with a hypergraph describing the

interaction of the different alleles, provides a general

network model for addressing questions in ecological

genomics (Savolainen et al. 2013; Landry & Aubin-

Horth 2014).

Work on these network extensions is by no means

exhausted and novel mathematical techniques in this

area are a focus of many recent publications. However,

while more complicated in their mathematical charac-

terization, already each of the measures of interest men-

tioned above (e.g. centrality measures, communities,

random walks, and percolation and diffusion) has all

been extended to capture analogous features in hyper-

graphs, multiplex networks and multilayer networks

(Bonacich et al. 2004; Bradde & Bianconi 2009; Gao et al.

2011; Cellai et al. 2013; De Domenico et al. 2013; Gomez

et al. 2013; Lu & Peng 2013; Battiston et al. 2014;

Boccaletti et al. 2014; Sol�e-Ribalta et al. 2014).

Conclusion

Network methods have so far been primarily applied

to detect and analyse characteristics of gene-flow pat-

terns in discrete habitats. This significantly expands

our molecular ecology toolkit for examining popula-

tion structure, for example by allowing us to identify

central patches, central corridors and hierarchical

structures. However, one of the main challenges of

molecular ecology is to connect these patterns to evo-

lutionary and ecological processes, not merely to

observe them. Molecular ecology, and conservation

genetics in particular, will be able to considerably

move forward when we will be able to assert predic-

tions regarding the evolutionary consequences of real-

world population structures. In this aspect, network

theory is yet to be exploited, and we believe is has

much more to offer in terms of theoretical modelling.

Using a network framework to design population-

genetic models (for example as in Boxes 1 and 2), we

might be able to get a better handle on evolutionary

dynamics.
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To understand the role of patch networks in evolu-

tionary dynamics, we would first need to evaluate the

typical gene-flow topologies found in natural systems.

These topologies may, in some circumstances, be

approximated fairly well by models such as the step-

ping-stone or SRMM, but when geographically-indepen-
dent factors influence migration and gene flow (e.g.

heterogeneous matrix, as in Fig. 2; migration corridors;

anthropogenic influences, when organisms ‘hitchhike’

on human transport networks), neglecting the complex-

ity of gene flow may be problematic. In this context, it

is important to remember that the evolutionary effect of

gene flow is related to both distance and quantity – low

amounts of long-distance gene flow can have a much

larger effect than large amounts of short-distance migra-

tion, as demonstrated by the stepping-stone model

(Kimura & Weiss 1964). Therefore, even if geographic

distance is the main factor influencing gene flow, other

factors inducing long-distance migration cannot always

be neglected when considering evolution, and a

complex topology may need to be assumed even in

such cases.

In many fields, important insights have been gained

by examining the peculiar characteristics of the network

description of the systems in those fields, and in molec-

ular ecology, we are only beginning to describe network

topologies. As more and more natural discrete-habitat

gene-flow networks will be described and analysed, we

will be better able to characterize gene-flow topologies

and get a clearer idea of the underlying processes form-

ing and acting upon such networks. This will be an

important step in understanding the role of gene-flow
complexity in evolutionary dynamics, and network

modelling will be crucial at this stage. Particularly, as

was pointed out earlier, knowing to what extent natural

gene-flow networks are simple or ‘spatially realistic’

would help us understand whether, and in what cir-

cumstances, previous modelling efforts where realistic,

and how important it will be to further develop the

integration of network theory into population genetics

and molecular ecology.
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